Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578751

RESUMO

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M. oryzae to combat rice blast disease, using advanced molecular dynamics techniques. Four key proteins (CATALASE PEROXIDASES 2, HYBRID PKS-NRPS SYNTHETASE TAS1, MANGANESE LIPOXYGENASE, and PRE-MRNA-SPLICING FACTOR CEF1) involved in M. oryzae's infection process were identified. A list of 30 plant metabolites with documented antifungal properties was compiled for evaluation as potential fungicides. Molecular docking studies revealed that 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin exhibited superior binding affinities compared to reference fungicides (Azoxystrobin and Tricyclazole). High throughput molecular dynamics simulations were performed, analyzing parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds, contact analysis, Gibbs free energy, and cluster analysis. The results revealed stable interactions between the selected metabolites and the target proteins, involving important hydrogen bonds and contacts. The SwissADME server analysis indicated that the metabolites possess fungicide properties, making them effective and safe fungicides with low toxicity to the environment and living beings. Additionally, bioactivity assays confirmed their biological activity as nuclear receptor ligands and enzyme inhibitors. Overall, this study offers valuable insights into potential natural fungicides for combating rice blast disease, with 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin standing out as promising and environmentally friendly alternatives to conventional fungicides. These findings have significant implications for developing crop protection strategies and enhancing global food security, particularly in rice-dependent regions.


Assuntos
Ascomicetos , Fungicidas Industriais , Magnaporthe , Oryza , Ácido Quínico/análogos & derivados , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Oryza/microbiologia , Flavonoides/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
3.
PLoS One ; 18(9): e0287416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682972

RESUMO

Human T-lymphotropic virus (HTLV), a group of retroviruses belonging to the oncovirus family, has long been associated with various inflammatory and immunosuppressive disorders. At present, there is no approved vaccine capable of effectively combating all the highly pathogenic strains of HTLV that makes this group of viruses a potential threat to human health. To combat the devastating impact of any potential future outbreak caused by this virus group, our study employed a reverse vaccinology approach to design a novel polyvalent vaccine targeting the highly virulent subtypes of HTLV. Moreover, we comprehensively analyzed the molecular interactions between the designed vaccine and corresponding Toll-like receptors (TLRs), providing valuable insights for future research on preventing and managing HTLV-related diseases and any possible outbreaks. The vaccine was designed by focusing on the envelope glycoprotein gp62, a crucial protein involved in the infectious process and immune mechanisms of HTLV inside the human body. Epitope mapping identified T cell and B cell epitopes with low binding energies, ensuring their immunogenicity and safety. Linkers and adjuvants were incorporated to enhance the vaccine's stability, antigenicity, and immunogenicity. Initially, two vaccine constructs were formulated, and among them, vaccine construct-2 exhibited superior solubility and structural stability. Molecular docking analyses also revealed strong binding affinity between the vaccine construct-2 and both targeted TLR2 and TLR4. Molecular dynamics simulations demonstrated enhanced stability, compactness, and consistent hydrogen bonding within TLR-vaccine complexes, suggesting a strong binding affinity. The stability of the complexes was further corroborated by contact, free energy, structure, and MM-PBSA analyses. Consequently, our research proposes a vaccine targeting multiple HTLV subtypes, offering valuable insights into the molecular interactions between the vaccine and TLRs. These findings should contribute to developing effective preventive and treatment approaches against HTLV-related diseases and preventing possible outbreaks. However, future research should focus on in-depth validation through experimental studies to confirm the interactions identified in silico and to evaluate the vaccine's efficacy in relevant animal models and, eventually, in clinical trials.


Assuntos
Simulação de Dinâmica Molecular , Entorses e Distensões , Humanos , Animais , Vacinas Combinadas , Simulação de Acoplamento Molecular , Retroviridae
4.
J Biomol Struct Dyn ; : 1-16, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526218

RESUMO

Angiogenesis, which results in the formation of new blood and lymph vessels, is required to serve metastatic cancer progression. Cancer medications may target these two interconnected pathways. Phytocompounds have emerged as promising options for treating cancer. In this study, we used a reverse docking strategy to find new candidate molecules for cancer treatment that target both pathways. Following a literature study, the important cancer-causing proteins vascular endothelial growth factor D (VEGF-D) and basic fibroblast growth factor (bFGF) for angiogenesis and matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) for the metastatic pathway were targeted. Protein Data Bank was used to retrieve the structures of chosen proteins. 22 significant plant metabolites were identified as having anticancer activity. To determine the important protein binding residues, active site prediction was used. Using Lenvatinib and Withaferin A as reference ligands, the binding affinity of certain proteins for plant metabolites was determined by docking analysis. Homoharringtonine and viniferin, both have higher binding affinities when compared to reference ligands, with docking scores of -180.96 and -180.36 against the protein MMP-9, respectively. Moreover, Viniferin showed the highest binding affinity with both MMP-9 and MMP-2 proteins, which were then subjected to a 100-ns molecular dynamic simulation. where they were found to be significantly stable. In pharmacoinformatics investigations, the majority of our compounds were found to be non-toxic for the host. In this study, we suggested natural substances as cutting-edge anticancer treatments that target both angiogenesis and metastasis, which may aid in accelerating drug development and identifying viable therapeutic candidates.Communicated by Ramaswamy H. Sarma.

5.
J Biomol Struct Dyn ; : 1-17, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403283

RESUMO

Monkeypox, a viral disease that is caused by monkeypox virus and occurs mainly in central and western Africa. However, recently it is spreading worldwide and took the focus of the scientific world towards it. Therefore, we made an attempt to cluster all the related information that may make it easy for the researchers to get the information easily and carry out their research smoothly to find prophylaxis against this emerging virus. There are very few researches found available on monkeypox. Almost all the studies were focused on smallpox virus and the recommended vaccines and therapeutics for monkeypox virus were originally developed for smallpox virus. Though these are recommended for emergency cases, they are not fully effective and specific against monkeypox. For this, here we also took the help of bioinformatics tools to screen potential drug candidates against this growing burden. Some potential antiviral plant metabolites, inhibitors and available drugs were scrutinized that can block the essential survival proteins of this virus. All the compounds Amentoflavone, Pseudohypericin, Adefovirdipiboxil, Fialuridin, Novobiocin and Ofloxacin showed elite binding efficiency with suitable ADME properties and Amentoflavone and Pseudohypericin showed stability in MD simulation study indicating their potency as probable drugs against this emerging virus.Communicated by Ramaswamy H. Sarma.

6.
Microb Pathog ; 162: 105358, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34902539

RESUMO

Chandipura vesiculovirus (CHPV) is a fast-emerging virus that causes acute encephalitis with a high death rate. Because of its extensive prevalence in African and Asian countries, this infection has become a global hazard, and there is an urgent need to create an effective and non-allergenic vaccine or appropriate treatment to combat it. A vaccine candidate is offered utilizing a computational technique in this study. To build a potential vaccine candidate, viral protein sequences were acquired from the National Center for Biotechnology Information database and evaluated with several bioinformatics techniques to identify B-cell and T-cell epitopes. V1 was shown to be superior in terms of various physicochemical qualities, as well as highly immunogenic and non-allergic. Molecular docking revealed that the CHPV vaccine construct had a greater binding affinity with human Toll-like receptors (TLR-3 and TLR-8) and that it was stable in molecular dynamics simulations. MEC-CHPV was in silico cloned in the pET28a (+) expression vector using codon optimization. The current research identifies potential antigenic epitopes that could be used as vaccine candidates to eradicate the CHPV. This in-silico development of a CHPV vaccine with multiple epitopes could open the path for future rapid laboratory tests.


Assuntos
Epitopos de Linfócito B , Vacinas , Biologia Computacional , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/genética , Humanos , Simulação de Acoplamento Molecular , Vacinas de Subunidades , Vesiculovirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...